Entrer un problème...
Algèbre linéaire Exemples
-21x-2y+z=-76−21x−2y+z=−76 , 12x+y=4612x+y=46 , -24x-2y+z=-88−24x−2y+z=−88
Étape 1
Déterminez le AX=BAX=B à partir du système d’équations.
[-21-211210-24-21]⋅[xyz]=[-7646-88]⎡⎢⎣−21−211210−24−21⎤⎥⎦⋅⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣−7646−88⎤⎥⎦
Étape 2
Étape 2.1
Find the determinant.
Étape 2.1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Étape 2.1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Étape 2.1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Étape 2.1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|-21-21|∣∣∣−21−21∣∣∣
Étape 2.1.1.4
Multiply element a21a21 by its cofactor.
-12|-21-21|−12∣∣∣−21−21∣∣∣
Étape 2.1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|-211-241|∣∣∣−211−241∣∣∣
Étape 2.1.1.6
Multiply element a22a22 by its cofactor.
1|-211-241|1∣∣∣−211−241∣∣∣
Étape 2.1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|-21-2-24-2|∣∣∣−21−2−24−2∣∣∣
Étape 2.1.1.8
Multiply element a23a23 by its cofactor.
0|-21-2-24-2|0∣∣∣−21−2−24−2∣∣∣
Étape 2.1.1.9
Add the terms together.
-12|-21-21|+1|-211-241|+0|-21-2-24-2|−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0∣∣∣−21−2−24−2∣∣∣
-12|-21-21|+1|-211-241|+0|-21-2-24-2|−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0∣∣∣−21−2−24−2∣∣∣
Étape 2.1.2
Multipliez 00 par |-21-2-24-2|∣∣∣−21−2−24−2∣∣∣.
-12|-21-21|+1|-211-241|+0−12∣∣∣−21−21∣∣∣+1∣∣∣−211−241∣∣∣+0
Étape 2.1.3
Évaluez |-21-21|∣∣∣−21−21∣∣∣.
Étape 2.1.3.1
Le déterminant d’une matrice 2×22×2 peut être déterminé en utilisant la formule |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-12(-2⋅1-(-2⋅1))+1|-211-241|+0−12(−2⋅1−(−2⋅1))+1∣∣∣−211−241∣∣∣+0
Étape 2.1.3.2
Simplifiez le déterminant.
Étape 2.1.3.2.1
Simplifiez chaque terme.
Étape 2.1.3.2.1.1
Multipliez -2−2 par 11.
-12(-2-(-2⋅1))+1|-211-241|+0−12(−2−(−2⋅1))+1∣∣∣−211−241∣∣∣+0
Étape 2.1.3.2.1.2
Multipliez -(-2⋅1)−(−2⋅1).
Étape 2.1.3.2.1.2.1
Multipliez -2−2 par 11.
-12(-2--2)+1|-211-241|+0−12(−2−−2)+1∣∣∣−211−241∣∣∣+0
Étape 2.1.3.2.1.2.2
Multipliez -1−1 par -2−2.
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
-12(-2+2)+1|-211-241|+0−12(−2+2)+1∣∣∣−211−241∣∣∣+0
Étape 2.1.3.2.2
Additionnez -2−2 et 22.
-12⋅0+1|-211-241|+0
-12⋅0+1|-211-241|+0
-12⋅0+1|-211-241|+0
Étape 2.1.4
Évaluez |-211-241|.
Étape 2.1.4.1
Le déterminant d’une matrice 2×2 peut être déterminé en utilisant la formule |abcd|=ad-cb.
-12⋅0+1(-21⋅1-(-24⋅1))+0
Étape 2.1.4.2
Simplifiez le déterminant.
Étape 2.1.4.2.1
Simplifiez chaque terme.
Étape 2.1.4.2.1.1
Multipliez -21 par 1.
-12⋅0+1(-21-(-24⋅1))+0
Étape 2.1.4.2.1.2
Multipliez -(-24⋅1).
Étape 2.1.4.2.1.2.1
Multipliez -24 par 1.
-12⋅0+1(-21--24)+0
Étape 2.1.4.2.1.2.2
Multipliez -1 par -24.
-12⋅0+1(-21+24)+0
-12⋅0+1(-21+24)+0
-12⋅0+1(-21+24)+0
Étape 2.1.4.2.2
Additionnez -21 et 24.
-12⋅0+1⋅3+0
-12⋅0+1⋅3+0
-12⋅0+1⋅3+0
Étape 2.1.5
Simplifiez le déterminant.
Étape 2.1.5.1
Simplifiez chaque terme.
Étape 2.1.5.1.1
Multipliez -12 par 0.
0+1⋅3+0
Étape 2.1.5.1.2
Multipliez 3 par 1.
0+3+0
0+3+0
Étape 2.1.5.2
Additionnez 0 et 3.
3+0
Étape 2.1.5.3
Additionnez 3 et 0.
3
3
3
Étape 2.2
Since the determinant is non-zero, the inverse exists.
Étape 2.3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[-21-211001210010-24-21001]
Étape 2.4
Déterminez la forme d’échelon en ligne réduite.
Étape 2.4.1
Multiply each element of R1 by -121 to make the entry at 1,1 a 1.
Étape 2.4.1.1
Multiply each element of R1 by -121 to make the entry at 1,1 a 1.
[-121⋅-21-121⋅-2-121⋅1-121⋅1-121⋅0-121⋅01210010-24-21001]
Étape 2.4.1.2
Simplifiez R1.
[1221-121-121001210010-24-21001]
[1221-121-121001210010-24-21001]
Étape 2.4.2
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
Étape 2.4.2.1
Perform the row operation R2=R2-12R1 to make the entry at 2,1 a 0.
[1221-121-1210012-12⋅11-12(221)0-12(-121)0-12(-121)1-12⋅00-12⋅0-24-21001]
Étape 2.4.2.2
Simplifiez R2.
[1221-121-121000-17474710-24-21001]
[1221-121-121000-17474710-24-21001]
Étape 2.4.3
Perform the row operation R3=R3+24R1 to make the entry at 3,1 a 0.
Étape 2.4.3.1
Perform the row operation R3=R3+24R1 to make the entry at 3,1 a 0.
[1221-121-121000-17474710-24+24⋅1-2+24(221)1+24(-121)0+24(-121)0+24⋅01+24⋅0]
Étape 2.4.3.2
Simplifiez R3.
[1221-121-121000-17474710027-17-8701]
[1221-121-121000-17474710027-17-8701]
Étape 2.4.4
Multiply each element of R2 by -7 to make the entry at 2,2 a 1.
Étape 2.4.4.1
Multiply each element of R2 by -7 to make the entry at 2,2 a 1.
[1221-121-12100-7⋅0-7(-17)-7(47)-7(47)-7⋅1-7⋅0027-17-8701]
Étape 2.4.4.2
Simplifiez R2.
[1221-121-1210001-4-4-70027-17-8701]
[1221-121-1210001-4-4-70027-17-8701]
Étape 2.4.5
Perform the row operation R3=R3-27R2 to make the entry at 3,2 a 0.
Étape 2.4.5.1
Perform the row operation R3=R3-27R2 to make the entry at 3,2 a 0.
[1221-121-1210001-4-4-700-27⋅027-27⋅1-17-27⋅-4-87-27⋅-40-27⋅-71-27⋅0]
Étape 2.4.5.2
Simplifiez R3.
[1221-121-1210001-4-4-70001021]
[1221-121-1210001-4-4-70001021]
Étape 2.4.6
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
Étape 2.4.6.1
Perform the row operation R2=R2+4R3 to make the entry at 2,3 a 0.
[1221-121-121000+4⋅01+4⋅0-4+4⋅1-4+4⋅0-7+4⋅20+4⋅1001021]
Étape 2.4.6.2
Simplifiez R2.
[1221-121-12100010-414001021]
[1221-121-12100010-414001021]
Étape 2.4.7
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
Étape 2.4.7.1
Perform the row operation R1=R1+121R3 to make the entry at 1,3 a 0.
[1+121⋅0221+121⋅0-121+121⋅1-121+121⋅00+121⋅20+121⋅1010-414001021]
Étape 2.4.7.2
Simplifiez R1.
[12210-121221121010-414001021]
[12210-121221121010-414001021]
Étape 2.4.8
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
Étape 2.4.8.1
Perform the row operation R1=R1-221R2 to make the entry at 1,2 a 0.
[1-221⋅0221-221⋅10-221⋅0-121-221⋅-4221-221⋅1121-221⋅4010-414001021]
Étape 2.4.8.2
Simplifiez R1.
[100130-13010-414001021]
[100130-13010-414001021]
[100130-13010-414001021]
Étape 2.5
The right half of the reduced row echelon form is the inverse.
[130-13-414021]
[130-13-414021]
Étape 3
Multipliez à gauche les deux côtés de l’équation de la matrice par la matrice inverse.
([130-13-414021]⋅[-21-211210-24-21])⋅[xyz]=[130-13-414021]⋅[-7646-88]
Étape 4
Toute matrice multipliée par son inverse est toujours égale à 1. A⋅A-1=1.
[xyz]=[130-13-414021]⋅[-7646-88]
Étape 5
Étape 5.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×1.
Étape 5.2
Multipliez chaque ligne dans la première matrice par chaque colonne dans la deuxième matrice.
[13⋅-76+0⋅46-13⋅-88-4⋅-76+1⋅46+4⋅-880⋅-76+2⋅46+1⋅-88]
Étape 5.3
Simplifiez chaque élément de la matrice en multipliant toutes les expressions.
[4-24]
[4-24]
Étape 6
Simplifiez les côtés gauche et droit.
[xyz]=[4-24]
Étape 7
Déterminez la solution.
x=4
y=-2
z=4